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We propose a generalization of quantum statistics in the framework of statistical 
mechanics. We derive a general formula which involves a wid e class of equilibrium 
quantum statistical distributions, including the Bose and Fermi distributions. We 
suggest a way of evaluating the statistical distributions with the help of many- 
particle partition functions and apply it to studying some interesting distributions. 
A question on the statistical distribution for anyons is discussed, and the term 
following the Boltzmann one in the expansion of this distribution in powers of 
the Boltzmann factor, exp[fl(/l- ei)], is estimated. An ansatz is proposed for 
evaluating the statistical distribution for quons (particles whose creation and 
annihilation operators satisfy the q-commutation relations). We also treat non- 
equilibrium statistical mechanics, obtaining unified expressions for the entropy 
of a nonequilibrium quantum gas and for a collision integral which are valid for 
a wide class of statistics. 

1. I N T R O D U C T I O N  

In recent years interest has increased in studying quan tum statistics 
different f rom Bose-Einstein and Fe rmi -Di rac  statistics (Lee et al., 1989; 
Fredenhagen et al., 1989, Greenberg,  1990; I m b o  et al., 1990; Longo,  1990; 
Mohapa t ra ,  1990; Balachandran,  1991 ; C h e n  and Ni, 1991 ; Aneziris et al., 
1991). There are two principal approaches to such statistics, which are 
realized in the f ramework of  the first-quantized and second-quantized theor- 
ies, respectively. We propose a third approach  in the f ramework of  statistical 
mechanics. 

The first approach  is based on studying the possible symmetry  types o f  
the state vectors o f  systems of  identical particles with respect to permutat ions  
o f  their arguments.  As is well known,  Bose-Einstein and Fe rmi -Di rac  statist- 
ics correspond to the totally symmetric and totally antisymmetric wave 
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functions, that is, the symmetric and antisymmetric representations of the 
permutation group. Messiah and Greenberg (1964) have observed that the 
state vector of a system of N identical particles may have, in the general 
case, a symmetry corresponding to any irreducible representation of the 
permutation group SN [this fact was pointed out by Dirac (1958)]. 

In the latter case, the symmetry of the N-particle state vector corre- 
sponding to some irreducible representation of SN may lead to several differ- 
ent types of symmetry of the ( N -  1)-particle state vectors [due to the fact 
that the restriction to the subgroup SN-1 of any irreducible representation 
of SN, other than symmetric or antisymmetric, contains several nonequiva- 
lent irreducible representations of SN-I; see, e.g., Hamermesh (1962)]. In 
accordance with this, a general N-particle state vector may be a mixture of 
states with symmetries each determined by some irreducible representation 
of SN (Hartle and Taylor, 1969; St01t and Taylor, 1970) [see also related 
considerations in the framework of algebraic quantum field theory by 
Dopplicher et al. (1971, 1974). And what is more, the N-particle state vectors 
may have such a symmetry that these will not run over all the space spanned 
by the vectors realizing a given irreducible representation of SN, but only 
over certain of its subspaces (Ohnuki and Kamefuchi, 1982). A complete 
classification of possible symmetry types of many-particle state vectors based 
on the permutation group treatment is an open problem. 

The above consideration is valid only if particles move in three or 
more spatial dimensions. This fact has been established in terms of the 
quantization method, which takes into account the particle identity already 
in determinating the configuration space of a many-particle system. The 
configuration space for N identical particles QN, if these are spinless, is 
defined in this method as follows (Laidlaw and DeWitt, 1971): 

QN=(MN--D)/SN (1) 

where M is the configuration space of one particle (for example, M is N2), 
D is the diagonal of the space M N (the set of points of M N for which the 
coordinates of at least two particles coincide). The quotient on SN just 
reflects the fact that the configurations which are obtained from each other 
by means of some particle permutation correspond to the same physical 
state. The configuration space for N spinning identical particles is more 
complicated (Tscheuschner, 1989; Balachandran et al., 1990). 

For a two-dimensional single-particle configuration space, QN of (1) is 
multiply connected. The wave function determined on multiply connected 
configuration space is many-valued in the general case (Finkelstein and 
Rubinstein, 1968). A particle permutation corresponds to a closed path in 
QN. The set of closed nongomotopic (cannot be continuously deformed to 
each other) paths on a manifold composes the fundamental group 7rl of the 
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manifold. Therefore, giving a certain change of the state vector for every 
particle permutation or, equivalently, for every closed path in QN means  
giving a certain representation of the group ~j(QN). In accordance with this, 
the possible symmetry types of the many-particle state vectors determined 
on the configuration space QN are classified by irreducible representations 
of the fundamental group of this space 7gl(QN ). 

As noticed by Wu (1984a) and Ringwood and Woodward (1984), 
:rt'l(Qu ) with QN from (1) is nothing but the braid group B u ( M )  of the 
manifold M. Thus, in two spatial dimensions, the possible state vector sym- 
metry types of a system of spinless identical particles are classified by the 
braid group irreducible representations [see Imbo et al. (1990) for more 
rigorous formulations]. Recently an approach resulting in the classification 
of statistics based on the braid groups has also been formulated in the 
framework of algebraic quantum field theory (Fredenhagen et al., 1989). On 
the fundamental group of the configuration space for the more involved case 
of spinning particles see Balachandran et al. (I 991). 

The first example of the braid group many-particle state vector symme- 
try was given by Leinaas and Myrheim (1977). They showed that the many- 
particle wave function determined on the configuration space (1) may have 
a symmetry such that it is multiplied by the phase factor e ~~ with 0 in 
0<  0 < 2re, under the permutation of any two coordinates. So, for two 
particles, 

V(2, 1) --- e;~ 2) (2) 

The symmetry (2) interpolates between those of the two-particle wave 
functions for the boson (0--0) and fermion (0 = n) systems. 

The particles whose wave function has the symmetry (2), with 0 r  n, 
were called anyons and the corresponding statistics were called O-statistics or 
fractional statistics. In recent years, 0-statistics has attracted great attention 
because of its use in two-dimensional physics: some quasiparticles appearing 
in theories of the fractional quantum Hall effect and high-temperature super- 
conductivity are considered to obey this statistics (Halperin, 1984; Kalmeyer 
and Laughlin, 1987). 

A complete classification of the braid group irreducible representations 
is lacking. Recently, as a result of significant progress on this issue, new 
types of the braid group irreducible representations have been found in 
mathematical studies (Jones, 1987; Wenzl, 1988; Birman and Wenzl, 1989) 
and in studies of exactly solvable models in statistical mechanics (Wadati et 
al., 1989) which provide new examples of possible symmetry types of the 
identical-particle system state vectors (Lee et al., 1989; Fredenhagen et al., 
1989; Longo, 1990). 
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Note that for the braid group statistics--like the statistics based on 
the permutation group--the symmetry of the N-particle state vector is not 
necessarily determined by one of the irreducible representations of the funda- 
mental group of the configuration space of identical particles Jr~(QN) 
[BN(M) for spinless particles] but may be determined by several of them. 

The second approach to generalization of statistics deals with the com- 
mutation relations for creation and annihilation operators more general than 
those for Bose and Fermi operators. This approach was initiated by Green 
(1953), who introduced the so-called para-boson and para-fermion commuta- 
tion relations, which have been extensively studied [for review, see Ohnuki 
and Kamefuchi (1982)]. Okayama (1952) began constructing the commuta- 
tion relations for the particles whose number in the same quantum state may 
take values from zero to d (we will call statistics which such particles obey 
d-statistics). Such relations have been derived by Kuryshkin (1988) for the 
case of systems with a single quantum state. More recently, in the context 
of studying possible small violations of the Pauli principle, the generalized 
commutation relations 

aiaf- qaf ai = rio (3) 

with q in -1 < q <1, have been suggested (Greenberg, 1990; Mohapatra, 1990) 
interpolating between the boson (q= 1) and fermion ( q = - 1 )  ones. We 
will refer to (3) as the q-commutation relations and to the particles whose 
annihilation and creation operators satisfying (3) as quons [following Green- 
berg (1991)]. 

The present paper is devoted to an approach to the generalization of 
statistics which is carried out in the framework of statistical mechanics. The 
aim of this approach is to provide a framework for the discussion of statistics 
more general than Bose-Einstein and Fermi-Dirac ones. As for equilibrium 
statistical mechanics, one of the tasks of this approach is to introduce new 
statistical distributions among which one could, in particular, look for the 
statistical distributions corresponding to the statistics appearing in the two 
above approaches [note that a family of distributions other than the Bose 
and Fermi ones--corresponding to d-statistics--was derived by Gentile 
(1940)]. The following question arises here: what is the most general form 
for the quantum statistical distribution? 

In this paper we present the first steps in the development of the statist- 
ical mechanical approach to the generalization of statistics and establish 
some correspondences with the two above approaches based on considera- 
tions of many-particle state vector symmetries and commutation relations. 
The rest of the paper is organized as follows. 

In Section 2, supposing, as usual, that the quantum states are filled by 
particles independent of each other, but refusing any restrictions on allowed 
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particle occupation numbers of a distinct state, we derive a general formula 
for the quantum statistical distribution 

x,Z;(x3 
n , -  (4) 

~ i ( X i )  

depending on an arbitrary [up to the condition of the existence of the Boltz- 
mann limit for the distribution (4)] function Ei(xi) with x;= exp[fl(p - ei)], 
fl  = kBT .  The formula (4) involves a wide class of statistical distributions, 
including the Bose and Fermi distributions. 

Section 3 deals with statistical distributions which allow an expansion 
in a power series in xi: 

2 3 
ni  = X i -~  a 2 x i  q- a 3 x i  + "  �9 �9 (5) 

which is closely related to the virial expansion for a quantum gas of free 
particles. We express the coefficients a2, a 3 , . . . ,  in terms of the many- 
particle partition functions of noninteracting particles, which provides a way 
of finding the statistical distribution when the latter are known. 

In Sections 4 and 5 the general considerations of the preceding sections 
are applied to concrete statistical distributions. Section 4 discusses the ques- 
tion of the statistical distribution for anyons. We use the results of Arovas 
et  al. (1985) to evaluate the second term in the expansion (5) for anyons. In 
Section 5 we propose ansatz which enables one to determine the statistical 
distribution for quons. To conclude that section, we introduce some gen- 
eralizations of the q-commutation relations for single-energy-level systems 
leading to new statistical distributions. 

Section 6 is devoted to a unified description of nonequilibrium gases 
consisting of particles obeying any statistics belonging to the class (4). A 
general expression for a nonequilibrium quantum gas entropy is derived 
which reduces to those for bosons and fermions in special cases. In addition, 
with the aid of a generalization of the Einstein relations for the absorption 
and emission probabilities, a general form for a collision integral for such 
particles is obtained. 

2. A CLASS OF QUANTUM STATISTICAL DISTRIBUTIONS 

We begin with a short review of a common way of deriving quantum 
statistical distributions (see, e.g., Landau and Lifshitz, 1980). This starts 
from the expression for the grand partition function of a quasiclosed 
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subsystem resulting from the Gibbs distribution, 

E = Z E exp[fl(~t ~V - E~;~)] (6) 
JV" k 

where the index k labels the states of the subsystem for a given particle 
number X in it, and E~,k are the energies of these states. Next, a single- 
particle quantum state i of energy ei is considered, and the particles in this 
state are chosen as a quasiclosed subsystem. The total particle energy in such 
a subsystem is 

ETv, = Ni si (7) 

where Ni is the particle number in the ith state. With the use of (7), (6) leads 
to the following expression for the grand partition function for the particles 
in the ith state: 

E~ = E { ee(u - ,~,) } N, (8) 
Ni 

The expressions for the partition functions for fermions or bosons are 
obtained from (8) if one considers that N~ may take values 0, 1 or 0, 1, 2 . . . .  , 
respectively. If  one allows the occupation numbers N~ to take values 
0, 1 . . . . .  d, where d is a positive integer (in other words, one considers that 
not more than dparticles may be in the same quantum state), then (8) results 
in the partition function for particles obeying d-statistics (Okayama, 1952) : 

d 

(Ei)a = Z (xi)' (9) 
1=0 

with 

xi= e "(~- ~a (10) 

The statistical distribution, being the average particle number in state 
i, is found with the aid of the thermodynamic identities 

n,=-(c~f~J~p)r ,  f~,-=- p - '  In E~ (11) 

For instance, E~ of (9) results in the statistical distribution for particles 
obeying d-statistics (Gentile, 1940): 

(ni)a = (xi) 2 l(xf) I (12) 
l~0  

interpolating between the Fermi (d= 1) and Bose ( d ~  ~ )  distributions. 
So-we see that the particular assumptions concerning the allowed values 

of the occupation numbers Ni lead to concrete statistical distributions. To 
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obtain a general formula for the statistical distribution, we make no assump- 
tion concerning the possible occupation numbers. At the same time, we will 
assume as above that the particles in the same quantum state can be regarded 
as a quasiclosed subsystem, which means that the quantum states are filled 
by particles independent of each other (note that the more general situation 
is logically possible; see Section 7). 

We observe that, according to (8), Ei depends on the quantities ei, P, 
fl only through the combination xi of (10), that is, E,- is a certain function 
of x~: 

z~=-%(x~) (13) 

Then, using (11), we obtain the statistical distribution 

x, ZI(x,) 
ni = (14) 

Ei(Xi) 

where the prime indicates differentiation with respect to xj. 
There exists a restriction to the function E,-(x;) which appears as the 

condition of the existence of the Boltzmann limit for the statistical distribu- 
tion. Namely, in the limit fl/l ~ - o o ,  that is, according to (10), xi--, 0, the 
distribution (14) should tend to the Boltzmann distribution x~. This gives 
the constraints 

E i ( x , ) / E i ( x , )  ~ 1 as x i ~ O  (15) 

Supposing the condition (15) to be fulfilled, we regard the function E~(x~) 
as arbitrary in other respects. 

The expression (14) is a general form for the statistical distribution for 
the case when each quantum state is filled by .particles independent of filling 
the other states. 

The formula (14) involves a wide class of statistical distributions para- 
metrized by the function Eg(xi). In special cases, (14) reduces to known 
statistical distributions. So, for Ei(x~) equal to (I +x~) and (1 -x l )  -l, (14) 
coincides with the Fermi and Bose distributions, respectively. For the parti- 
tion function (9), equation (14) results in the statistical distribution for 
particles obeying d-statistics (12). The class (14) also includes the so-called 
"quantum Boltzmann" distribution 

n/Q" = xi (16) 

which, according to Greenberg (1990), obeys particles whose creation and 
annihilation operators satisfy the q-commutation relations (3) with q=0  
[this distribution has the form (16) for any temperature and density rather 
than only in the Boltzmann limit x~ ~ 0]. 
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We turn now to the situation when it is more convenient to use a slightly 
different approach to the definition of the statistical distribution. Namely, 
let us consider the case when several quantum states correspond to every 
single-particle energy level, assuming that these states may have different 
properties with respect to the values their occupation numbers may take. A 
simple example is a supersymmetric particle which has both the bosonic and 
fermionic states for every energy level. We restrict ourselves here to the case 
when the total number and composition of states (the numbers of the 
bosonic, fermionic, and other states) are the same for all the single-particle 
energy levels. Denote the total number of states corresponding to every 
energy level (degeneracy of the energy levels) by g. 

In the case at hand, it is convenient to attribute thermodynamic quanti- 
ties to a given energy level rather than to a distinct state. Let the index I 
number single-particle energy levels and also label the thermodynamic quan- 
tities attributed to the level L Split all the values of the index i numbering 
single-particle states into groups so that every group should contain the 
indices of the states belonging to the same energy level (we label these 
groups by the index I as well). Then the partition function Ez and the 
thermodynamic potential f i t  of the particles in all the states of energy E~ can 
be written as 

E,E H El-, ~ I E  Z ~ (17) 
i = I  i ~ I  

The thermodynamic potential of a gas of particles as a whole is 

n = y  n,= Z n, (18) 
I i = l  

Following the above considerations, we get the grand partition function 
Er as a function ofx~ {-= exp[fl(p - e/)] } : Er = Ez(xD. The statistical distribu- 
tion nz= - (OOz/dP)r (the average particle number of energy el) is 

xiZ;(x~) 
n l -  (19) 

El(x~) 

Note that it is sometimes more convenient to discuss, instead of nz, the 
average particle number of energy ex attributed to one state, (1/g)nl. 

In the case under consideration the condition of  the existence of the 
Boltzmann limit is modified slightly. Indeed, since the Boltzmann distribu- 
tion xi is the average particle number in one quantum state but nl is the 
average particle number in all g states of energy e,, then the condition of 
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the existence of the Boltzmann limit takes the form nz ~ gx~ for xx ~ 0 or 

1 :~(x~) 
§ as x i ~ 0  (20) 

g E1(xz) 

To illustrate the above general consideration, we give some simple 
examples of the statistical distributions which are naturally written in the 
form (19). The first example is a gas of supersymmetric particles having the 
same number, to be denoted by g/2 ,  of the bosonic and fermionic states for 
each energy value. In this case, the product in the first of equations (17) 
consists of g / 2  multipliers 1 + xi and g / 2  multipliers (1 - x/) -1 corresponding 
to the fermionic and bosonic states, respectively. From (19), we get the 
natural result 

g n I = 2  l + x l  l - - x l J  2 \ e ' ( ~ ' - ' ) + l  eP(~'-'~--I " (21) 

Generalizing (21), one can consider the situation when every single- 
particle energy level has gd, states such that each may be occupied by not 
more than dl particles . . . .  , gal states such that each may be occupied by not 
more than d/particles (gd, + g d 2 + ' ' ' + g d , = g ) .  Using in this case (9), with 
suitable d, in (17), we obtain from (19) the statistical distribution 

1 nr = 1 {gd, (nZ)d, + gd2(nt)d2 + ' "  " + gdt(nt)d,} (22) 
g g 

where (nz)ds is given by (12), introduced by Balashova et aI. (1989). 
Note that the statistical distribution in the form (19) seems to be con- 

venient for considering the statistical mechanics of paraparticles [when the 
latter reduce to particles with ordinary statistics; see, e.g., Govorkov (1973)], 
especially in the case when there is supersymmetry in a system (Hama et al., 
1991). 

3. FINDING THE STATISTICAL DISTRIBUTION WITH THE AID 
OF MANY-PARTICLE PARTITION FUNCTIONS 

In this section we are concerned with statistical distributions for which 
the partition function (13) allows an expansion in a series in integer powers 
of x~: 

~i (Xi) ~- 1 4" Xi 4" a2(Xi) 2 4" a3(Xi) 3 4"" " " (23) 

where a2, a 3 , . . ,  are coefficients. That the first term in the right side of (23) 
equals one means that the vacuum state is supposed to be nondegenerate. 
The coefficient of xi in (23) has been chosen as equal to one in order to 
satisfy the condition of the existence of the Boltzmann limit (15). 
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The expansion (23) corresponds to a similar expansion of  the statistical 
distribution (14) 

ni (x i )  = xi  + a 2(xi) 2 + a ~(xi) 3 + .  �9 �9 (24) 

The connection between the coefficients at and al ( /=2,  3 , . . . )  can be 
obtained with the aid of (14). Let us express, for instance, the coefficients al 
in terms of al. For this, we integrate (14) with the use of (24), 

= explm~__ 1 a m ( x i ) " m  -1 ] (25) 

[the constant of  integration is fixed by the condition (15)]. Comparison with 
(23) yields 

at = ((xl)) exp a m ( x ' / m  (26) 
I _  m = 1 

where x ~ in double parentheses denotes that one should take the coefficient 
at x t in the expansion in a (formal) series in powers of x of  the expression 
following ((xl)). The few first coefficients a / a re  

I 
a2 = 7(1 +a2), a3 =~(1 + 3a2+2a3) 

1 (27) 
a 4 = ~  (1 + 6az + 8a3 + 3a~ + 6a4) . . . .  

The expansion of  the statistical distribution (24) is closely related, as 
we will see in Section 4, to the virial expansion of  the equation of  state for 
a quantum gas of  noninteracting particles, 

P = kBT(n  + B2n 2 + B3n 3 +" �9 ") (28) 

where P is the pressure, n is equal to N ~  V ( N / A )  for three (two) dimensions, 
V (A) is the volume (the area) occupied by the gas, and N is the particle 
number. The virial coefficients B2, B3 . . . .  depend on the statistics of particles 
and thus contain certain information about it. 

The virial coefficients can be expressed in terms of many-particle parti- 
tion functions (see, e.g., Huang, 1963). Developing this idea, we find here 
the expressions for the coefficients a~ in terms of  the many-particle partition 
ftrnctions of  noninteracting particles. 

For this pro:pose, we compare two expressions for the thermodynamic 
potential f~ for a system of N noninteracting particles. The former is known 
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in theory of virial expansions (see, e.g., Osborn and Tsang, 1976). This is 
obtained from equation (6) (which obviously holds for closed system as 
well) after replacing Y by N and taking into account that ~k exp(--flEuk) 
is the N-particle partition function ZN: 

f ~ = - - f l - ' l n E = - - f l - ' l n  f ~ ~NZN} (29) 
kN=0 

where ~" = e ~". 
To find the second expression for f~, we sum the equality f~i = 

_f l - i  In Ei, with Ei from (25), over i: 

9"[ O- l 
i t=1 at~ T (30) 

where at is defined by 

cri=~ e -1~" (31) 
i 

By comparing the coefficients at the same powers of ( in (30) and in 
the expansion in a series in ~ of (29), we obtain 

a,=(((')) l ln{~=oZN~N } (32) 

The few first coefficients at are 

a2=(ZZ2-Z~)/a2, a3=(3Z3- 3Z2Z, + Z3)/a3 
(33) 

a 4 = (4Z4- 4Z3Z, - 2Z 2 + 4Z2Z~ - Z4)/a4,... 

So, if the many-particle partition functions for a system of noninteract- 
ing particles are known, the formulas (31 )-(32) enable one to find the statist- 
ical distribution (24) [or, with the use of (26), the partition function (23)] 
in the form of a series in powers of xi. 

We will apply below the general considerations of this section to study 
concrete statistical distributions. 

4. ON THE STATISTICAL DISTRIBUTIONS FOR ANYONS 

Arovas et al. (1985) calculated the second virial coefficient for a system 
of noninteracting anyons with the quadratic dispersion law. We will translate 
here this result into the language of statistical distributions, having evaluated 
the coefficient a2 in the expansion (24) for the statistical distribution for 
anyons. 
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We will thus propose that the statistical distributions for anyons, for 
arbitrary values of the parameter 0 in (2), belong to the class of distributions 
allowing the expansion of the form (24). As a basis for this assumption, one 
can regard, first, the fact that it is true in special cases when the parameter 
0 in (2) takes values 0 and Jr and the statistical distributions coincide with 
the Bose and Fermi ones. In addition, for arbitrary 0, virial expansions of 
the form (28) hold for free anyons (Arovas et al., t985). Since the virial 
expansion (28) will be shown below to be a consequence of the expansion 
(24), it is natural to assume tha t  an expansion of the form (24) holds for 
statistical distributions for anyons for arbitrary values of the parameter 0. 

To find the connection between the coeff• B2 and a2, we transform 
the series (24) into a virial expansion of the kind of (28). For this, we first 
perform summation over i in (24), taking into account that N = ~i ni and 
restricting ourselves to the terms up to second order in xi: 

N = 0-1 ~ + a20-2~ "2 -t-" �9 �9 (34) 

where 0-, is given by (31), 5 = e au. Next, we will invert the series (34), having 
represented ~" in the form of a series in powers of N, restricting ourselves to 
the terms up to second order in N: 

0" 2 = l u _ a 2 _ _  U2 + �9 �9 �9 (35) 
0"1 0"3 

Finally, inserting (35) into (30) and taking into account that f~ = -  PA in 
two dimensions, we get 

a2 -5  ~v • �9 �9 (36) 
0"1 

Thus, we have obtained that the virial expansion (36) [of the form (28)] 
is a consequence of the expansion (24). Comparing (36) with (28) yields a 
relation linking B2 and a2: 

l 0"2 (37) 
B 2 : - ~ a 2 c r ~  A 

Arovas et al. (1985) calculated the second viriat coefficient Bz for the 
two-dimensional gas of noninteracting anyons with the quadratic dispersion 
law ~p =pZ/2m: 

B2 = - ~-(2A 2 - 2~ + �88 (38) 

where &T = (2zch2/rnkBT) 1/2 is the thermal length, A = A - [A] (brackets stand 
for integer part), A = 0/2zr, and 0 is the parameter appearing in (2) and 
taking any nonnegative real values here. 
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For the above anyon dispersion law, replacing the sum over i in (31) 
by an integral over momenta and evaluating the integral yields 

= fe_ll3(pZ/2m) d2p A _ A 
(2~r/i) 2 l ,~ (39) O-1 

Taking into account that Z~ = o"5 and inserting (38) and o"5, o'2 from (39) 
into (37), we obtain a2 = 8A 2 -  8~ + 1, so that the first terms of the expansion 
(24) for the statistical distribution for anyons are 

/ / anyon  = Xi .~ ( 8 A  2 __ 8 A  ql- 1)x~ + . .  �9 ( 4 o )  

Evaluating the coefficient a2 with the help of (27), we obtain the first terms 
of the corresponding expansion (23) for the partition function: 

~ a n y o n  = 1 + x , +  (2A-  1)2x~ + �9 �9 �9 (41) 

1 
For A = 0  and A= ~, (40) and (41) agree with the appropriate expansions 
for bosons and fermions, respectively. 

Notice that the coefficient a2 in (40) (at x~)--unlike the second virial 
coefficient B 2 ~ o e s  not depend on the anyon dispersion law, so the expan- 
sion (40) [and (41)] is valid for anyons with arbitrary dispersion law. 

Notice an interesting fact. Let us consider a system of two anyons in a 
1 2 2 2 harmonic potential V= ~c0 (x + y  ). The energy levels of the system are 

given by (Leinaas and Myrheim, 1977; Wilczek, 1982; Wu, 1984b) 

E2 = (2N+ ILl + 2n + [l+ 2A] + 2)he0 (42) 

where N, n are nonnegative integers, L is an integer, and l is an even integer. 
The partition function evaluated with the aid of (42) is (Comtet et al., 1989) 

Z2 = x2(1 - x)-2( 1 - x2)-2(x:Zi + x 2-2a) (43) 

where x = e -tJ~'~ 
The energy levels of a single anyon in a harmonic potential are simply 

those of a common two-dimensional oscillator 

E1 =(nl +n2+ l)hc0 (44) 

where nl, n2 are nonnegative integers. This yields for at of (31) 

o't = x t (1 - xl) -2 (45) 

Let us consider the limit/3hco ~ 0 (the limit of sufficiently high tempera- 
tures when the main contribution to the partition functions comes from the 
energy levels for which discreteness of the levels becomes inessential). Insert- 
ing Z2 of (43) in (33), using (45) and the equality Z1 = o"1, we obtain that, 
at the leading order in fllico, a2 is equal to 8A 2_ 8/~ + 1, which exactly agrees 
with (40) derived above by considering a system of noninteracting anyons. 
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This shows that the formulas of the previous section can be used for 
finding the successive terms of the expansion of the form (24) for the statist- 
ical distribution for anyons not only by considering a system of free anyons, 
but also in the case when the exact solutions of the many-anyon problem in 
a harmonic potential are known. 

Very recently the virial coefficients for an anyon gas were estimated 
perturbatively near Bose and Fermi statistics (Sen, 1991; McCabe and 
Ouvry, 1991; Comtet et al., 1991). It has been found that the virial 
coefficients Bu with N_> 3 have no perturbative corrections near Bose statist- 
ics (when /~--* 0) at first order in A, with respect to their bosonic values 

i 
(Comtet et al., 1991), and near Fermi statistics (6 = ~ - A  --* 0) at first order 
in 6, with respect to their fermionic values (Sen, 1991). These results can be 
translated into the language of statistical distributions to give some conclu- 
sions concerning the statistical distributions for anyons. To illustrate this, 
we consider, as an example, the third virial coefficient B3. 

For anyons with a quadratic dispersion law, the above statements imply 
(Sen, 1991; Comtet et aL, 1991) 

B~(7,) = [ ~ +  o(,~)]Z~., ~ 0  
(46) 

(B3)~ = 1/2_ ~ = [3~ + o ( 6 ) ] ; d ,  6 --,0 

Considerations similar to those that led to (37) for/32 give for B3 

n {2 ~ 2 o-3~_2 
= - -  a3 T / A  (47) t~3 ~a2 4 - ~  crt/ 

Combining this with (46), (39), and (33), we find for the coefficient a3 in the 
expansion (24) for the statistical distribution for anyons 

a3(A) = 1 - 18A + o(A), A ~ 0  
(48) 

(a3)2i= 1 /2 -6  = 1 + o(6), 6 --*0 

and, according to (27), for the coefficient a 3  in the corresponding expansion 
for the partition function (23), 

a3(~)  = 1 - 10~ + o(~) ,  ~ --,0 
(49) 

(a3)a= 1/2-6 = 0(6 ), 6 ~ 0 

5. STATISTICAL DISTRIBUTIONS CORRESPONDING TO 
THE q-COMMUTATION RELATIONS AND TO 
SOME OF THEIR GENERALIZATIONS 

5. t .  Statistical  Distributions for Quons  

Here we find the statistical distributions for quons, particles whose 
creation and annihilation operators satisfy the q-commutation relations (3) 
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with q in the interval - 1 ~ q < 1. We will suppose that all these belong to the 
class of distributions allowing an expansion of the form (24). This assump- 
tion seems to be natural because it is valid for the Bose and Fermi distribu- 
tions corresponding to the relations (3) with q at the ends of the interval 
- 1 < q < 1. We will see below the consistency of this assumption. 

First, as for anyons in the previous section, we evaluate the coefficient 
a2 in the expansion (24) for the statistical distribution for quons. To estimate 
the two-particle partition function Z2 on the right side of the first equality 
in (33) in the case involved, we use the following arguments. 

There are only two irreducible representations of the permutation group 
$2, symmetric and antisymmetric, corresponding to the Young diagrams 

and 

Mohapatra (1990) found that any two-quon state is the mixture of the 
symmetric and antisymmetric states with the probabilities 

wm=~(l+q), wB=�89 (50) 
(for q= l, the symmetric state occurs with probability one; for q = -  1, the 
antisymmetric state does). Note that this agrees with the approach of Hartte 
and Taylor (1969) in thinking of a general N-particle state as a mixture of 
states with symmetries each corresponding to the symmetry of some irreduc- 
ible representation of the permutation group SN. 

In accordance with this, we write the two-particle partition function of 
noninteracting quons Z2 in the form 

Z2 = w t::~Z~:3 + w[~Z[3 (51) 

where 

ZE3:3 and Z[3 

are the partition functions containing contributions from the two-particle 
states having symmetries 

7-1-3 and B 

that is, the partition functions of noninteracting bosons and fermions, 
respectively. One can represent 

ZEt3 and Z B 

a s  

Z2 =Zo.~ ~ (52) 

902/32/5-4 



752 Isakov 

where the partition function Z(2) (Zo,l)) includes the contributions from 
those states of a system of two identical particles which correspond to the 
two particles in the same quantum state (in distinct states). Let a set of the 
energy values of one particle be { g,-} with i taking values in some index set. 
Then, one can write for Zr and Zo,l ), 

Z(2)  --- ~ ,  e - 2 ~  gi = 0 .  2 

i 

Zo,1 ) = �89 y, e -e~' s e -/~ej (53)  
i A # i )  

-- ~ ~ e - ~ '  e -p~t- e -p< = ~(o-i -- o'2) 

with o',, given by (31). We get from (52) and (53) 

Z m = Z ~ = ,  2 ~(o',- 0-2) (54) 

Inserting (54) into (51) and evaluating the coefficient a2 of (33) (recall 
that Z1 = o1) with the aid of the resulting expression for Z2 yields 

a2 = q (55) 

Thus, the first terms of the expansion (24) for the statistical distribution for 
quons are 

n qu~ = x i  + q x  2 + "  �9 �9 (56) 

F rom (27), we obtain a2 = (1 +q)/2 ,  so that the corresponding expansion 
for the partition function (23) is 

E qu~ = 1 + x , +  �89 + q ) x 2 +  . �9 �9 (57) 

For q=  1 and q = - 1 ,  (56) and (57) coincide with the first terms of 
suitable expansions for bosons and fermions. Furthermore, note that these 
agree with Greenberg's (1990) statement that for q = 0, the statistical distri- 
bution for quons is the "quantum Boltzmann" one (16). 

We now find the statistical distribution for quons in full. For this 
purpose, we use the representation---given by Mohapatra (1990)--of the 
q-commutation relations (3) for the particles with a single quantum state. 
In the latter case, on omitting indices i ,  j ,  (3) becomes 

a a  + - q a + a  = 1 (58) 

One can introduce an infinite set of orthonormal states {IN>}, N = 
0, 1, 2 , . . . ,  on which the operators a +, a satisfying (58) act as the raising 
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and lowering operators: 

a+IN)=,~N+,IN+ 1), N =  1, 2 . . . .  
(59) 

aIN)=•NIN - 1>, N = 0 ,  1, 2 . . . .  

The recursion relation is obtained for the coefficients XN: 

Z~+, = 1 + qX~ (60) 

which, combined with the natural condition Zo = 0 being the consequence of  
the vacuum condition aL0)=0 and (59), yields 

X~= l + q + .  �9 �9 +qN- ,  (61) 

Furthermore, the equality follows from (59), 

a+alN> = X~IN> (62) 

The formulas (59)-(62) obtained by Mohapatra (1990) give the rep- 
resentation of  the q-commutation relations (58) on the space spanned by the 
vectors {IN)}, N = 0 ,  1, 2 , . . . ,  to which we will refer as the representation 
in the bosonic Fock space. 

We consider the Hamiltonian (see, e.g., Greenberg, 1990) 

H =  eN (63) 

where e is the particle energy, and N is the particle number operator having 
by definition eigenvalue N on the state IN): 

N-IN> = NIN)  (64) 

For q = 1, equations (59)-(62) give the representation of the commuta- 
tion relations for Bose operators. In this case, the particle number operator 
~r is a+a. Computing the statistical distribution (the average particle number 
in the state of energy e) in the usual way, 

Tr{Pr exp[fl(/t N -  H)]} 
,~ (65) 

Tr exp[p(/~N-- H)]  

where the trace is performed over all the states {IN>}, we get 

N 
~]N=0 Nx x 1 

n=  ~ u - e ~(~-u)- I  (66) 
EN=O x 1 - x  

with x = e ~(u- ~), that is, the Bose distribution for the particles having a single 
state of energy e. 

We now ask the following question. Can the statistical distributions 
corresponding to the commutation relations(3) for q other than one be 
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obtained by using only the above representation of the q-commutation rela- 
tions in the bosonic Fock space? In particular, can the Fermi distribution 
be obtained for q = -  1 in such a way? 

We propose here an ansatz according to which the statistical distribu- 
tions corresponding to the commutation relation (3) for arbitrary q in 
- 1  < q_< 1 can be evaluated with the help of the following formula: 

n = (a+a) - Tr{a+a exp[f l (pN-  H)]} 
Tr exp[f l (pN-  H)] (67) 

Taking into account (63) (64), we obtain 

Tr e x p [ b ( p N - H ) ]  = 1 + x + x 2 +  . . . .  (1 - x )  -l 

Also using (62), we can rewrite equation (67) as 

n = ( 1 - - x )  ~ l~,2xU~-(l--x)O(x) (68) 
U=0 

For q=  1, the ansatz (67) recovers the Bose distribution since in this 
case the particle number operator ~r is a+a and therefore (67) reduces 
to (65). 

Consider the case q = -  1. In this case, A,~ of (61) is equal to zero or 
one, depending on whether N is even or odd. Then, according to (68), we 
obtain 

x 1 
. . . .  (69) n = ( 1 - x ) ( x + x 3 + x S + "  ) l + x  eP(~-~')+l 

which is the Fermi distribution. Thus, the ansatz proposed using only the 
representation of the q-commutation relations in the bosonic Fock space 
does nevertheless recover for q = -  1 the correct result, the Fermi distribu- 
tion. This suggests that the ansatz also can be successful in evaluating the 
statistical distributions for different values of q in the interval - 1 < q < 1. 

Let us consider now arbitrary q in -1  _<q<l.  For evaluating D(x) in 
(68) in this case, we multiply both the sides of equation (60) by x u + ~ and 
perform summation over N nonnegative integers in the resulting equality: 

)~vxN= ~ X N+q ~ s (70) 
N=I N=I N=I 

[in (70) the change of the summation variable N ~ N - 1  is made]. Since 
2~ = 0, the second term on the fight side of-(70) can be rewritten in the form 
q.x ~N=2 2,1-1X N- 1, showing the proportionality of it to D(x). Thus 

X 
D(x) - (71) 

(1 -x ) (1  - q x )  
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Inserting (71) into (68), we obtain finally the following simple expression 
for the statistical distribution for quons: 

x 1 
n q . . . . .  (72) 

1 - q x  e t j ( ~ -  ~') - q 

which interpolates between the Bose ( q = l )  and Fermi ( q = - l )  
distributions. 

Let us expand (72) in a series in powers of x, 

r/qu~ = X (  1 + q x  + q2x2 + .  �9 .) (73) 

The coefficient at x 2 in (73) coincides with what has been found above in a 
different way [see (56)]. This supports the ansatz suggested. 

Furthermore, for q = 0, (72) yields 

( r / q u ~  = 0 = X = e p(~ - ~) (74) 

agreeing exactly with Greenberg's (1990) statement that for q=0  the q- 
commutation relations should correspond to the "quantum Boltzmann" 
distribution (16). This also supports the ansatz (67). 

These facts support the consistency of the ansatz proposed. Below, the 
additional arguments supporting the ansatz (67) will be presented. 

By using the first equality in (25), one can find the partition function 
corresponding to the statistical distribution (72): 

~'~qu~ = (1 - qx )  - ' / q  

Expansion in powers of x yields 

with 

Equ~ = oo~ (l!)qq xt 

s=0 l! 

(75) 

(76) 

(/!)q-- (1 +q)(1 + q + q 2 ) . . . ( 1  + q + .  �9 �9 + q1-,) 

In particular, for q = 0, one obtains E(x)= e x. 
The ansatz (67)-(68) can be used for evaluating the statistical distribu- 

tion corresponding to different commutation relations for which the rep- 
resentation in the bosonic Fock space is given. We consider here the 
commutation relations (Mohapatra, 1990) 

aa + _ qa+a = q-2~ (77) 

where ~- is the particle number operator, which have been constructed by 
analogy with those arising in theory of quantum groups, aa + -  qa§  = q - ~  

(Biedanharn, 1989; Macfarlane, 1989; Sun and Fu, 1989). Like (58), the 
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commutation relations (77) interpolate between those for Bose (q= 1) and 
Fermi ( q = -  1) operators. Mohapatra (1990) found that for the case (77), 
the eigenvalues of  the operator a+a on the above-introduced states IN) are 

Z2 = qN-l(1 _ q-3N)/(1 _ q-a) (78) 

With these ;tN, the evaluation of the statistical distribution with the aid of 
(68) (computing the sum over N reduces to summing a geometric progres- 
sion) results in 

x(1 - x )  
n = (1 - qx ) (1  - x / q  2) (79) 

interpolating between the Bose (q= l) and Fermi ( q = - 1 )  distributions. 
That the Fermi distribution is obtained for q = - 1 appears to indicate the 
applicability of the ansatz (67) to the commutation relations (77). Note that 
(79) is inconsistent for q=  0 since n ~ 0 when q ~ 0. 

5.2. Generalizations of the q-Commutation Relations 

Here we propose some generalizations of the q-commutation relation 
for single-state systems (58) and outline a way of evaluating the correspond- 
ing statistical distributions. 

On rewriting the commutation relation (58) as 

aa + = 1 + qa+a (80) 

we will consider successive generalizations of the relations (80), adding to 
the right side of (80) a normal product of the operators a, a § quadratic 
in a, a +, 

aa + = 1 + qla+ a + q2a+a+aa (81) 

a sum of normal products of the operators a, a + up to degree d, 
d 

aa += ~ qt(a+)la t (82) 
I = l  

and, finally, an infinite series of normal products of the.operators a, a +, 

aa += ~, ql(a+)ta t (83) 
/ = l  

In (81)-(83), ql, q2 , . . ,  are coefficients. 
We will discuss a representation of the commutation relations (81)-(83) 

in the bosonic Fock space, similar to Mohapatra's (1990) consideration of 
the q-commutation relations. Namely, we suppose the equality (59) [and 
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hence, (62)] to hold. We will apply the above ansatz and consider what it 
leads to. 

First, we treat the commutation relation (81). As above, ~ = 0  as a 
consequence of the vacuum condition a [0 )=0  and (59). Next, as for the 
relation (58), the application of both sides of (81) to the state [0) yields, in 
virtue of (59), s = 1. Let, as above,/~ = 1, The application of (81) to the 
states IN) with N >  1 results in the recursion relation 

~ 2 + 1  1 2 2 2 = + ql~N + q2~.N- 1A,~e (84) 

[reducing to (60) for ql = q, q2 = 0]. 
When ql = 1, q2 = -3 ,  the commutation relation (81) reduces to that for 

particles obeying 2-statistics (Okayama, 1952; Kuryshkin, 1988): 

a a + = l  - + 3 + + -r-a a - ~ a  a aa  (85) 

Since ~o=0, Xj=I ,  we obtain from (84) in this case that 23.,=0, 
/~3,.+~ = 1, and ~3m+2=2 for m nonnegative integers. Then the statistical 
distribution obtained with the aid of (68), 

x(1 +2x) 
n= (86) 

1 + x + x  2 

coincides with that for particles obeying 2-statistics [(12) with d=  2]. Thus, 
the ansatz (67)-(68) leads to the correct statistical distribution in the special 
case when the commutation relation (81) reduces to (85). 

Similarly, for the commutation relation (82), one can get the recursion 
relation generalizing (60), (84): 

~ 2 +  1 = 1 2 2 2 2 2 
q- qlXN q- q2J, N - I~N "~" " " -~ qd~N-a+ I~ ,N-d+2  " " . /~2 (87) 

where all A,'s with negative subscripts should be regarded as vanishing. In 
the special case when q~= 1, q2 . . . . .  qa_~=O,  and q a = - ( d +  l ) / d ! ,  the 
commutation relation (82) reduces to that for particles obeying d-statistics 
(Kuryshkin, 1988) : 

aa + = 1 + a + a - d +  1 (a+)a(a) a (88) 
d[ 

In this case, the ansatz (68), together with the relations (87), leads to the 
statistical distribution for particles obeying d-statistics (12). 

Thus, for special values of q~ . . . .  , qa, when the commutation relations 
(81)-(82) correspond to d-statistics with different d, the ansatz (67)-(68) 
leads to the correct results for statistical distributions. This suggests that the 
ansatz can be successful in finding the statistical distributions corresponding 
to the commutation relations (81)-(82) for arbitrary values of q~ . . . .  , qa 
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[and also to the commutation relation (83) as the limiting case d ~  oo 
of (82)]. 

Let us turn now to the commutation relation of the most general form 
(83). As always above, we have L~=0, and ,~N with N =  1, 2 , . . .  are found 
consecutively from the equalities which are obtained by application of both 
sides of equation (83) to the states IN) with N =  I, 2 . . . . .  The first ;tN are 

s s  ~ 2 = l + ( l + q , ) ( q l + q 2 )  . . . .  (89) 

Using (68), one can evaluate the first terms in the expansion (24) for the 
statistical distribution : 

n = x + q~x 2 + (q~ + qlq2 + q2)x 3 +" " " (90) 

Since, in virtue of (62), the eigenvalues of a+a on the states IN) are equal 
to A, 2, only AN with N <  l contribute to the coefficient at x ~ in (90). Therefore, 
computing consecutively the quantities ,~, Aa , . . .  of (89), one can evaluate 
consecutively the coefficients in the series (24) and obtain finally the statist- 
ical distribution in the form of an expansion in an infinite series in powers 
of x. 

6. A UNIFIED DESCRIPTION OF A NONEQUILIBRIUM 
QUANTUM GAS 

So far, we have dealt with gases in a state of thermodynamic equi- 
librium. This section is devoted to a unified description of a nonequilibrium 
gas. We will be concerned with the nonequilibrium entropy, one of the most 
important characteristics of a nonequilibrium gas, and also consider the 
collision integral. These have different forms for bosons and fermions. We 
will obtain unified expressions for the nonequilibrium gas entropy and for 
the collision integral which are valid for a wide class of statistics. 

6.1. The Entropy of a Nonequilibrium Quantum Gas 

Let us consider first the expression for the entropy of an equilibrium 
gas obeying the statistical distribution (14). It is derived with the use of the 
known thermodynamic identity S = -  (Of~/OT) u applied to (18), where f~ is 
given by the second of equations (1 l), and Ei in (11) is obtained by integrat- 
ing equation (14) : 

S =  Si = In Ei (xi) xj tn xi 
�9 E,(xi) 
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Let xi(ni) be xi expressed in terms of n; with the aid of equation (14) 
treated as an equation for x~. We substitute xi(n~) into (91) instead of xi: 

S= Z S~=~ {In E~(x;)-n~ In x~}xi-x,~,i) (92) 
i i 

Let us notice now that the expression for the entropy S~ in terms of the 
distribution function n~ should have the same form whether the distribution 
is equilibrium or nonequilibrinm. This follows from the usual way of deter- 
mining the nonequilibrium gas entropy by summing the statistical weights 
corresponding to the sets of states with near energy values [see, e.g., Landau 
and Lifshitz (1980) and also the Appendix; we will refer to this as the 
Boltzmann approach], which uses in no way the fact whether gas is in equi- 
librium or not. Therefore, (92) is the entropy of a nonequilibrium gas obey- 
ing the distribution (14) in equilibrium. 

The expression (92) can be obtained in an alternative way. Namely, if 
one tries to find the most general expression for the entropy S~ in terms of 
n~, which, in varying with respect to ni, provided the total particle number 
and the total gas energy are constants, would lead to the equilibrium statist- 
ical distribution (14) as the extremum condition, then (92) is easy to obtain. 

In special cases, (92) reduces to the expressions for the entropy of 
nonequilibrium Bose and Fermi gases. It would be desirable to make sure 
explicitly that (92) agrees with what is obtained in the Boltzmann approach 
for statistics other than Bose-Einstein and Fermi-Dirac ones. One such 
example is given in the Appendix, where the entropy of a nonequilibrium 
gas of particles obeying 2-statistics is calculated in the Boltzmann ap- 
proach and is shown to coincide with what is obtained from the general 
formula (92). 

6.2. A General Form for the Collision Integral 

In treating the collision integral we will consider, for definiteness, the 
case when two particles obeying the same statistics take part in an elementary 
collision act. In this case, the Bose-Einstein and Fermi-Dirac statistics, the 
collision integral reads (see, e.g., Ahiezer and Peletminskiy, 1977) 

I(np) = ~ 8p.p4W(plp2, p3p4)c~(el + e2- e3- e4) 
PtP2P3P4 

• {np,npz(1 :k np3)(1 +np,)-np3np4(1 +no,)(1 :[:np2)) (93) 

where the upper signs refer to bosons and the lower signs to fermions. In 
(93), np is the particle distribution function, w is determined by the particle 
interaction potential, and the two terms in braces correspond to the process 
pj +p2~p3+p4 and to the inverse one. We will only discuss here the first 
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process and, properly, the first term in braces in (93) (the inverse process 
can be treated similarly) ; the corresponding part of the expression under the 
summation sign in (93) is the probability of the collision p~ + P2-~ P3+P4 �9 

When we speak about the form of the collision integral, we refer to the 
dependence of the collision probability on the particle distribution functions 
in the initial (%~, %2) and the final (%3, %4) states. The dependence on 
%,, %2 both for bosons and for fermions consists simply in proportionality 
to the product np,np2, or equivalently, to the product of the numbers of the 
colliding particles. The statistics of the particles is displayed through the 
dependence of the collision probability on the particle distribution functions 
in the final states, which has the form (1 +%3)(1 +%4) and (1-%3)(1-%,)  
for bosons and fermions, respectively. 

Let us observe now that for bosons, the latter dependence can be 
obtained by using the known Einstein relations for the emission and absorp- 
tion probabilities. Indeed, let us write these connecting the probability of 
the absorption of a photon in state i by a system of atoms Wab(i) with that 
of the emission of a photon in the same state W~m(i) as follows : 

w , b ( i )  ni (94) 
w~m(i) l+ni 

where ni is the photon distribution function. 
The relation (94) can be treated as connecting the probability of a 

photon leaving the ith state, Wab(i), with that of a photon coming into the 
same state, were(i). In such a formulation, the relation (94) has a wider 
applicability domain. Namely, for any statistical processes with bosons tak- 
ing part, these connect the probability of a boson coming into the ith state, 
Wem(i), with that of a boson leaving this state, Wab(i) (hi is the statistical 
distribution for bosons now), valid not only for equilibrium processes but 
also for nonequilibrium ones. 

As  applied to the collision integral, this implies the following. Since the 
probability of leaving state i has been shown above to be proportional to 
the particle number in this state m, then the probability of coming into state 
i, according to (94), will be proportional to 1 + n;. Thus, we come to the 
above form for the collision integral for bosons (93). 

Exploiting these observations, we will give below a generalization of the 
Einstein relation (94) to find on this basis a general form for the collision 
integral applicable to a wide class of statistics. 

6.2.1. Generalization of the Einstein Relations 

To generalize (94), we consider a generalization of Einstein's (1916) 
picture of the absorption and emission of photons by atoms. Namely, let 
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us imagine a system consisting of particles which obey arbitrary statistics 
belonging to the class (14) (we will call them "particles" simply for short) 
and some hypothetical objects, with discrete energy levels (to be referred as 
"atoms"), able to emit and absorb the "particles." Thermodynamic equi- 
librium in such a system is assumed to be reached as a result of the "atoms" 
exchanging "particles." 

Einstein (1916), using the relation (94), recovered the Planck distribu- 
tion for photons. We will act in an opposite way: starting with the absorbed 
and emitted particles obeying the statistical distribution (14), we will derive 
for these the relations analogous to (94). 

Following Einstein (1916), we regard the distribution of "atoms" over 
their energy levels as the Boltzmann one. Then the ratio of the number of 
"atoms" in the states of energy e,, to that of energy e~ is 

N, , /  Nt = (g,,,/gz) e ~(~'- ~') (95) 

where gin, gt are the degeneracies of the energy levels. Let hoot,,= 
e~-  e,,, > 0. The "atoms" pass from the lth level into the mth level and vice 
versa, emitting and absorbing "particles" of energy hc0t,,,. In equilibrium, 
this number should be equal to the number of "atoms" passing from the lth 
level to the mth level, N~g,,Wem, where W~m is the emission probability. This 
equality combined with (95) yields 

W,b/Wem = e -~h~ (96) 

Replacing in (96) the indices lm by single index i and the photon energy 
hc0z,, by ei, and then expressing exp(-/3e;) in terms of the particle distribu- 
tion function ni, with the aid of equation (14), we get the generalization of 
the Einstein relation (94) to the case of particles obeying any statistics 
belonging to the class (14): 

Wab( i ) /Wem( i ) = Xi (hi) (97) 

where x~(ni) is again the solution of equation (14) treated as an equation 
for xi. 

6.2.2. A General Form for  the Collision Integral 

We use now the relation (97) in order to generalize the collision integral 
(93) to particles obeying in equilibrium the statistical distribution (14). 

We believe, first, that, like (94), the relation (97) holds not only for 
equilibrium processes, but also for nonequilibrium ones. In addition, we 
consider, as above, the probability of the collision Pl + P2 ~ P3 § P4 to be pro- 
portional to np,n~, 2, that is, to the product of the numbers of colliding par- 
ticles. The latter means that the probability of a particle leaving state i is 
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proportional to n; with some factor independent of n~. In accordance with 
the above interpretation of the Einstein relation extended to their generaliza- 
tion (97), the probability of a particle coming into state i is then proportional 
to 

f ( n i )  = - -  (98) 
x(ni) 

with the same factor. Thus, the dependence of the probability of the process 
Pl ~- P2 ~ P3 -{- P4 on the particle distribution functions in the final states %3 
and %4 shows up in the factorf(ni) for every one of these states. Hence the 
collision integral for particles obeying in equilibrium the statistical distribu- 
tion (14) can be written in the form [compare with (93)] 

I(np) = ~ ~p,p4W(PlP2, P3P4) 6 ( e l  ~- e2--  e3 -- C4) 
PlP2P3P4 

x {np,np2f(np3)f(%4) - np3n~4f(np,)f(%2) } (99) 

withf(n~) given by (98). 
We note, first, that the expression (99) leads to the correct result for 

fermions, for which x ~ ( n i ) = n i / ( 1 - n ~ )  and, hence, f ( n i )  = 1 - h i .  Next, it 
satisfies the natural demand concerning a collision integral. Namely, it van- 
ishes for the equilibrium distribution function. Furthermore, by using the 
expression (92) for a nonequitibrium entropy, Bottzmann's H-theorem can 
be derived in the case at hand, which indicates the consistency of the expres- 
sion (99) for the collision integral with the expression for a nonequilibrium 
entropy (92). All these facts point to the self-consistency of the result (99). 
This suggests that, in spite of derivation being somewhat heuristic, (99) is 
the correct expression for the collision integral for particles obeying any 
statistics belonging to the class (14). 

7. CONCLUDING REMARKS 

In the preceding sections we have dealt with the class of statistics appear- 
ing in the case when the condition is fulfilled that the quantum states are 
filled by particles independent of each other. Note that the more general 
situation is logically possible when, for some given set of quantum states, 
filling any state depends on the particle numbers in the other states of the 
set. In this case, it is necessary to deal with the partition function for the 
particles in all the states of the  set because this cannot be factorized now 
(cannot be presented as the product of the partition functions, each corre- 
spondin~ to the particles being in one quantum state). The latter may take 
place for parastatistics (Bhattacharyya et al., 1989a,b). Note that this more 
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involved situation permits a general treatment similar to what was presented 
in the preceding sections. The appropriate work is in progress. 

A further remark concerns the following question : what does giving the 
statistics of particles mean in the approach dealing with the symmetries of 
many-particle state vectors? We would like to note here the following. In 
order to give the statistics of particles, it is necessary to give the symmetries 
of the N-particle state vectors for all N, which Can be pictured as giving an 
infinite sequence of symmetries 

S y m m ( 2 )  ~ S y m m ( 3 )  - - . .  �9 �9 ~ S y m m ( N )  --*. �9 �9 (100) 

where S y m m ( N )  denotes conditionally the symmetry of the N-particle state 
vector. Indeed, if the latter is known for a given N, it permits in principle 
the evaluation of the partition function of N noninteracting particles Z N .  

Giving the whole sequence (100) enables one to evaluate all the many- 
particle partition functions and, according to the results of Section 3, to find 
the statistical distribution. It is natural to regard the statistics as being given 
when the statistical distribution is known. Therefore, the problem of classifi- 
cation of statistics in the approach dealing with the symmetries of many- 
particle state vectors can be formulated as the problem of classification of 
the allowed symmetry sequences (100). 

We note in conclusion that the complete theory will unify all three of 
the above approaches to a generalization of statistics, that is, in addition to 
the correspondence between allowed symmetry sequences (100) and statist- 
ical distributions, this should also show, for every allowed symmetry 
sequence (I00), the commutation relations for creation and annihilation 
operators for particles whose many-particle state vectors possess the proper 
symmetries. 

APPENDIX. THE ENTROPY OF A NONEQUILIBRIUM GAS 
OBEYING 2-STATISTICS: THE GENERAL FORMULA (92) 
AND THE BOLTZMANN APPROACH 

Here we will derive, using the Boltzmann approach, the expression for 
the entropy of a nonequilibrium gas obeying 2-statistics and compare this 
with the expression obtained from the general formula (92). 

We turn first to the formula (92). For 2-statistics, according to (9), 
Ei (xi) = 1 + xi + x 2 �9 Inserting this into (14), we obtain an equation linking ni 
and xi, quadratic with respect to x i .  A positive root of this equation is 
x i ( n i )  = 2ni { C ( n i )  + 1-rti} -l, where 

C ( n i )  = (1 + 6n,-  3n2) 1/2 (A. 1) 
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Thus, according to (92), the entropy of a nonequilibrium gas obeying 2- 
statistics is 

[ 

Let us turn now to the Boltzmann approach. In this approach (see, e.g., 
Landau and Lifshitz, 1980) all the single-particle quantum states are split 
into groups of states with near energy values. We label the state groups by 
the indexj. Let the number of states in theflh group be Gj, and the number 
of particles in the states belonging to thejth group be Nj. Then the nonequi- 
librium gas entropy is defined as 

S = • Sj= y. In(AFj) (A.3) 
J J 

where AF/is the statistical weight for thejth group of particles (the number 
of ways of placing N: particles over Gj states). 

We estimate (A.3) for a gas obeying 2-statistics. Let Nj/be the number 
of states occupied in some placing only by one particle. Given N1/, the 
number of ways of placing N: particles over Gj states is equal to the number 
of ways by which (N:+ N~j)/2 occupied states can be chosen from the total 
number of states G, 

G+ 
((Nj + NIj)/2) 

multiplied by the number of ways by which Ntg states can be chosen from 
the number of occupied states, 

( (Nj+ N,;)/2 / 

Nlj / 

where 

GI= G[ 
N] N!(G-N)[  

is a binomial coefficient. Then 

( + /( <A,+ 
AF; = "~, \(N)+ N,j)/2J \ N,: ) 

The values over which the summation in (A.4) is performed are determined 
by the condition that the number of occupied states should not exceed Gj, 
which gives (Ny+ Nly)/2 < (7: or N~j<2G:- Nj, that is, 

N,i=O, 1 . . . . .  2G:- N: 
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Since Nj, Nu, G i are macroscopically large numbers, one can use 
Stirling's formula NT ~ exp(N In N) for N>> 1 in (A.4). Introducing the nota- 
tions nj = NgGj, nij = Nu/G j and replacing the resulting sum over n u in (A.4) 
by an integral, then, since Gi  I is extremely small, we obtain 

where 

[ ' 2 -~  
AFj= G / /  exp{-GJ(z)} dz (A.5) 

J0 

We estimate the leading term in the asymptotic expansion of the integral 
(A.5) for Gj>> 1 by the Laplace method (see, e.g., Olver, 1974). In the interval 
[0, 2-nj] ,  the function (A.6) has a minimum at the point 

Zo=�89 11 (A.7) 

where C(nj) is given by (A.1). Hence the expression for the entropy of a 
nonequilibrium gas (A.3) for the particles obeying 2-statistics, after neglect- 
ing the terms which are small compared to Gj, takes the form 

S = Ej ajf(zo) 

or  

S = - ~  Gj{7-3n/-C(nJ) ln( 7 - 3 n / - C ( n j ) ) 6  6 

4C(nj)-13 ln(-C(ns)- 1) -t l+3nj-C(nJ) l n ( l + 3 n J 6 C ( n j ) - ) } 6  (A.8) 

It is straightforward to show, by using the identities 

nj[7 - 3nj- C(nj)] = [C(nj) - 1][C(nj) + 1 -n/l 

[1 + 3nj- C(nj)][C(nj) + 1 -nj] =4nj[C(nj) - 1] 

that the expression for the entropy of a nonequilibrium gas obeying 2- 
statistics resulting from the Boltzmann approach (A.8) agrees with the 
expression (A.2) which is obtained from the general formula (92). It should 
be taken into account that the exact coincidence of (A.2) with (A.8) is 
achieved by means of the correspondence y'~ (. �9 -) ~ ~j G/(. �9 .), which must 
be used because the quantities labeled by i are attributed to one quantum 
state, but the quantities labeled by j relate to Gj states of near energies. 
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